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THE MINIMUM DIMENSIONS OF THE CONTROL VECTOR IN THE 

LINEAR DYNAMIC PROBLEM OF STABILIZATION* 

V.N. SOKOLOV 

A mathematical formalization is proposed of the problem of estimating the 
number of engines necessary to stabilize a mechanical elastic system, 
functioning in conditions of zero gravity, in a specified position. 
Conditions are given which allow the class of control matrices imparting 
the property of full controllability to dynamic systems to be described 
/l/. The analysis of conditions of full controllability for mechanical 
systems in the neighbourhood of the position of equilibrium was given in 
/2/. 

We consider the following dynamic selfsimilar system: 

z'= Fs+ Gu, ZE Rn, UE R"' (1) 

where F and G are constant matrices, x is the state vector and u the control vector. We 
know /l, 2/ that if the condition of full controllability 

rank 11 G, FG, FBG, ., F'-%j = n (3 
holds, then a control u(t) exists which takes the system (1) from any initial position z0 to 
the origin of coordinates. If condition (2) does not hold, then such a control does not, in 
general, exist. Our aim is to determine the minimum number of scalar control functions Uf, 
i.e. the minimum dimensions of the control vector for which the condition of full control- 
lability can be attained by a suitable choice of the control matrix G. The answer to this 
problem is given by the following theorem. 

Theorem. Let kl be the number of linearly independent eigenvectors corresponding to 
the i-th eigenvalue of the matrix F, and k=max,k,. Then k will be the minimum dimension of 
the control vector u(t) for which the choice of the matrix G can still result in satisfying 
the condition of complete controllability (2). 

Following /3/, we shall introduce a number of concepts and assertions. We shall call the 
vector g the root vector corresponding to the eigenvalue h,, provided that 

(F - I,E)hg = 0 (3) 
for some integral value of h>O. We shall call the heigt j of the vector g the smallest 
value of h for which condition (3) holds, i.e. (F - h&'g# 0 and (F - h,E)jg = 0. The zero 
vector has zero height by definition. The set of root vectors corresponding to some eigen- 
value A,, forms a root subspace P,, invariant under the transformation F - J.,E, and consequently 
also invariant under the operator F. The root subspace P, in turn decomposes into k, cyclic 
subspaces (k, is the number of linearly independent eigenvectors corresponding to the i-th 
eigenvalue), invariant under the operator F. These subspaces 
over the vectors 

Ilpi. p = 1,2,... k,, are stretched 
CV’~ . which satisfy the condition 
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g;,+* = (F - E.,E) gbyi, v := 1, 2, ., q,, - 1, (F - h,E) g& = 0 

where q,, is the height of the vector generating IIILi. The set of vectors gP,,",v = 1,2,....4, 

forms the u-th tower in the subspace P,, is linearly independent, and '1, is the height of 
the n-th tower. The maximum height q of the tower in Pi is equal to the multiplicity h,, 
representing the root of the minimum polynomial cancelling the matrix F, and the sum of the 

tower heights is equal to the multiplicity hi representing the root of the characteristic 
polynomial. The vectors gwVp, p = 1, 2,. .,ki, Y = 1, 2, ., q,, are linearly independent and form a 
canonical basis in Pi. The operator F in this basis has a canonical Jordan form. 

The following theorem is well-known /3/: let QT be a cyclic subspace for the operator F, 
generated by the vector Gr. Then QI will be a direct sum of the cyclic subspaces generated 

by the projections of the vector Gr on the root subspaces, and the dimensions of the cyclic 
subspace will be equal to the sum of the heights of the projections of the generating vector 
on the root subspaces. 

Therefore the condition of complete controllability (2) can be formulated as follows. 
Let G' be the Pth column of the control matrix C(1). In order for the dynamic system (1) to 
be completely controllable it is necessary and sufficient that the geometrical sum of the 
cyclic subspaces generated by the projections of the vectors GT, r= 1, 2,...,m, on every root 
subspace coincide with this subspace. 

We shall now prove the theorem on the minimum dimensions of the control vector. According 
to the theorem in /3/ quoted above, it is sufficient to consider the cyclic subspaces generated 

by the projections of the vectors Gr, r= 1....,n, on an arbitrary root subspace Pi. 

We shall denote the projection of the vector Gr on the root subspace Pi by G&r and 
explain the conditions under which the geometrical sum of the cyclic subspaces generated by 
the vectors G,', r = I,.... m, can coincide with Pi. 

We shall show that if the dimension of the control vector m>k= ma&k,, then we can 
always select a matrix G ensuring that the condition of complete controllability holds. We 

shall take, in the root subspace in question, a set of k, vectors gTIi,r= 1,2,..., k,, where every 
vector g,l' generates a corresponding tower, and write G,' = g,,', r = 1, 2, _, k,, G,’ = 0. r> k,. 

Then the geometrical sum of the cyclic subspaces generated by the vectors G,',r= 1,2,...,m will 

coincide, by virtue of their choice, with the root subspace PI. From the relation (F- h,E)hg,,- 

0, r== 1, 2,. _, k, it follows that (F-&@g,,= 0. Therefore, if the vector g,, generates ther-th 

tower in a root subspace, then a complex conjugate vector 871 will also generate a tower 

in some root subspace. Therefore, the columns (7,r=l,2,...,m representing the control 
matrices G obtained as a result of summing the corresponding projections Gip over all root 

subspaces P,, will be real as required. 
Now we shall show that if condition m<ki = k, holds for some root subspace P,, then the 

geometrical sum of the cyclic subspaces generated by the vectors G,',r= 1,2,...,m, will not 
coincide with the root subspace for any choice of G. 

To arrive at the proof, we shall consider, in the root subspace P1, the sequence of 
columns g,, s = 1, 2, ., 4, where q is the maximum height of the towers appearing in the root 

subspace in question. The column g, == co1 (g,,, g,,, . . ..gk.) is composed of linearly independent 
vectors g,,, p= 1, Z,..., k where every vector %r generates a corresponding tower in the cyclic 
root space, and the set of vectors occurring in the tower comprises the basis in P,. We shall 

assume that the symbol (F-Xh,E)ga denotes a column of vectors (F - h,E)g, = col((F - h,E)gls, (F - 1,E) 

gzs> .3 (F - Ad) gksb Let us define the sequence of columns g, by the relation 

gstl =m= (F -&E) Ba. s= 1. 2 (..., q-l, gq+l= (F--h,E)g,=O (4) 

Hence, we obtain the set of vectors g,,,,p= 1,2,..., k. The vectors form a system of vectors, 
some of which may be null vectors in the root space. Let us denote by G, the column of m 
vectors where the r-th component of C, is a projection Gtr, r= 1, Z,...,m of the vector (7 on 

the subspace P,. The column of vectors G,= col(G,~,G,*. ., Glm) can be expanded in a sum in the 
components of the columns f. by virtue of the completeness of the vectors g,, in the space 
P,: 

where A,” - (m x k) are matrices. Let us apply the operator F-&E to every column comprising 
the right and left side of the relation (5). By virtue of relation (4) and the definition of 
the operation (F - h,E)g, , we obtain 

(F -. hiE) G, = z; A,i&+, 
s=x 



We shall show that when m<k, the 
columns 

G,‘ (F - 

does not coincide with the root space. 
vectors constituting the column gl. Its 
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space stretched over the vectors constituting the 

h;E) G,, . ., (F - hp?W’ ‘Go (3 

Let us denote by L the subspace stretched over the 
dimensions will be equal to k. 

Then the dimensions of the subspace I,,, stretched over the vectors AZig,, will not exceed 
m < k,L, C L. Let us choose in L a vector 5, orthogonal to L,. Then it will be clear that we 
shall not be able to represent the vector 5 in the form of a linear combination of vectors 
from the sequence (7), since by definition it is not a linear combination of vectors occurring 
in the column G,,, and all remaining terms of the sequence will contain, according to (6), only 
the vectors not belonging to L. The projection on P, of the space stretched over the column 
vectors of the matrix (2) coincides with the space stretched over the set of vectors (7), 
and the latter space is smaller than the root space. Therefore, the condition of complete 
controllability (2) cannot be satisfied. 

From what was said above, it follows that the necessary and sufficient condition of 
complete controllability of system (1) is that condition 

rank ALi = k, (8) 

holds for all root subspaces Pi, where A,' is given by formula (5) and ki is the number of 
linearly independent eigenvectors corresponding to the eigenvalue ht. 

As we showed before, the inequality rank A,‘< ki leads to violation of the condition of 
complete controllability. Let condition (8) hold for all root subspaces. We shall show that 
the space stretched over the set of vectors (7) coincides with the root space P,. We denote 
the subspace stretched over the set of vectors (ir'- h&G,. (F - h,E)j+‘G,, . . ..(F - h,E)g-lG, (6) 
VI, and the subspace stretched over the set of vectors @;j+l,Kj+s.. . .,Rq (4) by Wj. Now using 

by 

reverse induction in j, we shall show that Wf and V, coincide when Ogj<q - 1, provided that 
condition (8) holds. When j = q- 1, the coincidence of the subspaces is obvious by virtue 
of the property of the matrix A,' (8) and formula (6). Let us assume that the subspaces $; 
and Wj coincide when s-i>i>f, and prove that ';_1 and Wj_L coincide. We know 131 that 

Wr-I is a straight sum of the subspace WI and a subspace stretched over the vectors of the 

column g,, and hence stretched over the vectors of the column A,"g,. According to formula (6) 
we have 

where 8, is a column of vectors belonging to Wj. From this, together with the inductive 
assumption, we conclude that the space Vj_l is a straight sum of the subspace stretched over 

the vectors of the column A,'g,, and the subspace Wt. Therefore "j-1 also coincides with 

wj_%. Finally, we have that J', coincides with Wo. In other words, the goemetrical sum of the 

cyclic subspaces generated by the projections of the vectors Gr, r='l, 2,...,m, on the root 
subspace coincides with this subspace, and this proves that the condition of complete con- 
trollability (2) holds. 

EZcimpZe. We shall consider a mechanical system consisting of two identical pendulums 
suspended from identical dollies, and an engine whose type is immaterial. The dollies can 
move along a horizontal guide. The moment at the engine shaft is transmitted to the dolly 
wheels and directly to the pendulums. What was proved above shows that it is impossible to 
design a transmission system which will ensure the damping of arbitrary oscillations of both 
pendulums by the action of an engine. Here it is important that the control matrix should be 
independent of time, otherwise a single engine could be used to quench the oscillations first 
of one pendulum, and then of the other. 
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